Black - Box Preconditioning for Mixed Formulationof Self - Adjoint Elliptic Pdescatherine
نویسندگان
چکیده
منابع مشابه
Several Complex Variables and the Order of Growth of the Resonance Counting Function in Euclidean Scattering
We study four classes of compactly supported perturbations of the Laplacian on Rd, d ≥ 3 odd. They are a fairly general class of black box perturbations, a class of second order, self-adjoint elliptic differential operators, Laplacians associated to metric perturbations, and the Dirichlet Laplacian on the exterior of a star-shaped obstacle. In each case, we show that generically the resonance c...
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملOn preconditioned eigensolvers and Invert-Lanczos processes
This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...
متن کاملA note on $lambda$-Aluthge transforms of operators
Let $A=U|A|$ be the polar decomposition of an operator $A$ on a Hilbert space $mathscr{H}$ and $lambdain(0,1)$. The $lambda$-Aluthge transform of $A$ is defined by $tilde{A}_lambda:=|A|^lambda U|A|^{1-lambda}$. In this paper we show that emph{i}) when $mathscr{N}(|A|)=0$, $A$ is self-adjoint if and only if so is $tilde{A}_lambda$ for some $lambdaneq{1over2}$. Also $A$ is self adjoint if and onl...
متن کاملA Black-Box Multigrid Preconditioner for the Biharmonic Equation
We examine the convergence characteristics of a preconditioned Krylov subspace solver applied to the linear systems arising from low-order mixed finite element approximation of the biharmonic problem. The key feature of our approach is that the preconditioning can be realized using any “black-box” multigrid solver designed for the discrete Dirichlet Laplacian operator. This leads to preconditio...
متن کامل